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Abstract
We present a parametrically efficient method for measuring the entanglement
of formation Ef in an arbitrarily given unknown two-qubit state ρAB by local
operations and classical communication. The two observers, Alice and Bob,
first perform some local operations on their composite systems separately, by
which the desired global quantum states can be prepared. Then they estimate
seven functions via two modified local quantum networks supplemented a
classical communication. After obtaining these functions, Alice and Bob can
determine the concurrence C and the entanglement of formation Ef .

PACS numbers: 03.67.Mn, 03.65.Wj, 03.67.Hk

1. Introduction

In the development of quantum mechanics, entanglement plays a significant role [1–3].
Nowadays, it has been rediscovered as a new physical resource for quantum information
processing [4]. Before using entanglement in a given unknown system, one needs to make
sure that it really exists. Furthermore, one wants to know how much entanglement is
there. The simplest way to approach this, without new ideas, is prior state reconstruction
by quantum tomography [5] which provides full knowledge about the density matrix of the
system. However, there are more efficient ways, by which one can compute the entanglement
properties directly. Sancho and Huelga [6] presented the first direct method for determining
the concurrence [7] of two-qubit pure state. Ekert, Horodecki and co-workers did a series of
works on entanglement detection and measurement in an unknown mixed state without the
prior state reconstruction [8–10].
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In particular, it is important in the implementation of quantum communication to detect
and measure entanglement within local operations and classical communication (LOCC)
scenario, in which the two observers, Alice and bob, are far apart from each other and share
the unknown composite system. It has been proven that entanglement is a precondition for
secure quantum key distribution [11]. Recently, Alves et al [12] did two works: the first is that
Alice and Bob can estimate the functions of composite quantum states by two local networks3;

the second is that they prove the physical operation ˜IA ⊗ �B [9] can be implemented by LOCC
where �B is a nonphysical map acting on the subsystem at Bob’s location. The authors applied
the techniques to the detection of entanglement and estimation of channel capacity. However,
in order to make use of entanglement better, the well-defined entanglement of formation in
the composite system need to be considered.

In [10], using the structural physical approximation (SPA) [13] of partial transposition
map, Horodecki presented an efficient and experimentally viable method for measuring two-
qubit entanglement of formation without the prior state reconstruction. In this paper, we
present an LOCC method, an extension of Horodecki’s method. The paper is organized as
follows: in section 2, we characterize the LOCC method in detail. We also analyse the
efficiency of our method against the LOCC quantum tomography. Finally, in section 3, we
conclude the paper with a summary.

2. Method for measuring two-qubit entanglement of formation by LOCC

For a two-qubit state ρAB, the formula for the entanglement of formation [7] is

Ef (ρAB) = h

(
1 +

√
1 − C(ρAB)2

2

)
, (1)

where h(x) is Shannon function, and C denotes the concurrence defined as

C(ρAB) = max[
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4, 0], (2)

in which the four monotonically decreasing real numbers {λi} are the eigenvalues of the matrix
ρABρ̃AB, here ρ̃AB = (σy ⊗σy)ρ

∗
AB(σy ⊗σy). Both C and Ef for an arbitrarily given two-qubit

state ρAB can be determined as long as one knows these eigenvalues. P. Horodecki presented
a global method [10] for measuring the entanglement of formation Ef . On the basis of the
relation Tr[(ρABρ̃AB)k] = ∑

i (λi)
k , he pointed out that one can get {λi} by estimating four

parameters Tr[(ρABρ̃AB)k], k = 1, 2, 3, 4.
In our LOCC method, Alice and Bob can get the four parameters by measuring seven

functions. It is assumed that they share a number of the unknown two-qubit quantum states
ρAB. First, Alice and Bob divide their initial systems into four groups and prepare the requisite
input states. Then they estimate seven functions of the input states by two local collective
measurements. After obtaining all of the seven functions, they can determine the entanglement
of formation Ef . The detailed description of our LOCC method is presented in the following
two subsections.

2.1. Preparation of the requisite global quantum states

Alice and Bob divide their initial ensemble into four groups. In the kth group, they subdivide
the quantum states into sets of 2k elements, for k = 1, 2, 3, 4. For example, in the second
group, they subdivide the quantum states into sets of (ρAB ⊗ ρAB)⊗2.

3 In section 2.2, we will see that the two local networks are only valid when the input quantum states have some
symmetrical property.
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In the LOCC method, Alice and Bob need the input states (ρAB⊗ρ̃AB)⊗k for k = 1, 2, 3, 4.
However, the transformation from ρAB to ρ̃AB is nonphysical. To see how to prepare these
quantum states, we need to recall the concept of SPA [13].

Horodecki pointed out that if one mixes a nonphysical map � with an appropriate
proportion depolarizing map D, then the resulting map [13],

�̃ = pD + (1 − p)�, (3)

will be completely positive, and, as such, it represents a physically allowed transformation.
The effect of the depolarizing map D on a dimension-d quantum state ρ is

D(ρ) = I/d, (4)

i.e., it turns any ρ into a maximal mixed state [13]. Recently, Alves et al [12] have proven that

the SPA ˜IA ⊗ �B can be implemented by LOCC if it can be written as a convex sum

˜IA ⊗ �B =
∑

i

piMAi
⊗ NBi

, (5)

where the physical operation MAi
acts on the subsystems of Alice and the physical operation

NBi
acts on the subsystems of Bob.
In the procedure of quantum states preparation, Alice and Bob need to implement the SPA

of nonphysical map (IAB ⊗ TAB)⊗k on the quantum states (ρAB ⊗ ρAB)⊗k . But, after some
analysis, we find that the SPA cannot be written as the form of equation (5). Fortunately, Alice
and Bob can implement it indirectly. For convenience, let the notation S(�) denotes the SPA of
a nonphysical map �. First of all, we briefly explain that the operation S

(
IA1k

⊗IB1k
⊗IA2k

⊗TB2k

)
(the operators with suffixes 1k and 2k represent the maps on the quantum states in the odd and
even position, respectively) can be implemented by LOCC,

S
(
IA1k

⊗IB1k
⊗IA2k

⊗TB2k

) = αDA1k
⊗DB1k

⊗DA2k
⊗DB2k

+ (1 − α)IA1k
⊗ IB1k

⊗ IA2k
⊗ TB2k

= (α − β)�A1kA2k
⊗ DB1kB2k

+ (1 − α + β)IA1kA2k
⊗ 	B1kB2k

,

where

�A1kA2k
= α

α − β
DA1k

⊗ DA2k
+

−β

α − β
IA1k

⊗ IA2k
,

	B1kB2k
= 1 − α

1 − α + β
IB1k

⊗ TB2k
+

β

1 − α + β
DB1k

⊗ DB2k
.

(6)

The operators �A1kA2k
and 	B1kB2k

will be completely positive when α � d7
k

/(
d7

k + 1
)

and
β � d3

k

/(
d7

k + 1
)

(for the optimal implementation we should choose equal mark), in which
dk is the dimension of subsystem. In fact, equation (6) is a special case in the discussion of
Alves et al [12], in which we choose �B = IB1k

⊗ TB2k
. In a similar way, we can validate that

the operation S
(
IA1k

⊗ IB1k
⊗TA2k

⊗ IB2k

)
can also be implemented by LOCC when we choose

the same parameters.
Now we describe the procedure of quantum state preparation. For example, Alice and Bob

have chosen a set of quantum state in the kth group. The procedure consists of three kinds of
physical operations. First, they perform the optimal operation 
′

k = S
(
IA1k

⊗IB1k
⊗IA2k

⊗TB2k

)
on the set of (ρAB ⊗ ρAB)⊗k . After doing this operation, they can get the following quantum
state

ρ ′
k = 
′

k[(ρAB ⊗ ρAB)⊗k]

= d3
k

d7
k + 1

IA1kB1k
⊗ IA2kB2k

+
1

d7
k + 1

(
ρAB ⊗ ρ

TB
AB

)⊗k
, (7)
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Figure 1. Networks for remote measurement of the parameters Tr[(ρABρ̃AB)k]. Part (a) denotes the
preparation procedure of ρk , part (b) is the network presented in [12] and part (c) is the additional
part.

where dk = 2k . Second, they perform the optimal operation 
′′
k = S

(
IA1k

⊗ IB1k
⊗TA2k

⊗ IB2k

)
on the quantum states ρ ′

k . The output states will be

ρ ′′
k = 
′′

k(ρk)

= δIA1kB1k
⊗ IA2kB2k

+ γ (ρAB ⊗ ρ∗
AB)⊗k, (8)

where δ = d3
k

(
d7

k + 2
)/(

d7
k + 1

)2
and γ = 1

/(
d7

k + 1
)2

. In equation (8), we have used the
property: ρ

TATB
AB = ρT

AB = ρ∗
AB. Finally, Alice and Bob perform the ‘spin-flip’ operation σy

respectively on each quantum state which is in the even position. As a result, they will get the
quantum state

ρk = δIA1kB1k
⊗ IA2kB2k

+ γ (ρAB ⊗ ρ̃AB)⊗k . (9)

After performing the above operations, Alice and Bob can get the quantum state ρk . Although
ρk is not equal to the state (ρAB ⊗ ρ̃AB)⊗k , the two states have the same direction in the
generalized Bloch representation, which is the essence of the SPA [13]. When Alice and Bob
choose the set in different groups, they can get the desired input states ρk , for k = 1, 2, 3, 4.

2.2. Estimation of the parameters Tr[(ρABρ̃AB)k]

In [12], Alves et al presented two local networks which can estimate the functions of non-
local composite quantum state. However, the networks are not universal, they require the
quantum state to satisfy some symmetrical property. Here we present two modified networks
which can estimate the functions of an arbitrarily given quantum state. As shown in figure 1,
part (a) denotes the preparation procedure of input state ρk , part (b) is the network presented
in [12] and part (c) is the additional part. In our LOCC method, Alice and Bob can estimate
the four parameters Tr[(ρABρ̃AB)k] for k = 1, 2, 3, 4, via the modified networks, which needs
to measure seven functions of the input quantum states.

Now we reanalyse part (b); in this part, the input state is

ρin(k) = ρk ⊗ ρa1 ⊗ ρb1 , (10)
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where ρa1 = |0〉〈0|a1 and ρb1 = |0〉〈0|b1 are the initial states of the ancillary qubits in Alice
and Bob’s networks, respectively. In the computational basis, the Hadamard gate and the
controlled-V2k gate within Alice and Bob’s networks are denoted by

H = 1√
2

(
1 1
1 −1

)
, UC−V2k

=
(

1 0
0 0

)
⊗ I2k +

(
0 0
0 1

)
⊗ V2k, (11)

where V2k is the shift operator and has the property Tr(V2kρ1⊗ρ2⊗. . .⊗ρ2k) = Tr(ρ1ρ2 . . . ρ2k)

[10]. Passing through part (b), the incoming state transforms into the following state,

ρ ′
out(k) = Uh1UvUh1ρin(k)U

†
h1

U †
vU

†
h1

, (12)

where Uh1 = Ha1 ⊗ Hb1 ⊗ (IAB ⊗ IAB)⊗k and Uv = UC−VA2k
⊗ UC−VB2k

. In the state ρ ′
out(k),

what we care about is the quantum state evolution of the two ancillary qubits a1 and b1. After
some deduction, we can get

ρa1b1(k) = TrAB[ρ ′
out(k)]

= 1

4


1 + µ

(k)
1 + µ

(k)
3 µ

(k)

5 −µ
(k)

5 µ
(k)
4

−µ
(k)

5 1 + µ
(k)
2 − µ

(k)
3 −µ

(k)
4 µ

(k)

5

µ
(k)

5 −µ
(k)
4 1 − µ

(k)
2 − µ

(k)
3 −µ

(k)

5

µ
(k)
4 −µ

(k)

5 µ
(k)

5 1 − µ
(k)
1 + µ

(k)
3


where

µ
(k)
1 = Tr

[(
VA2k

⊗ IB2k

)
ρk

]
+ Tr

[(
IA2k

⊗ VB2k

)
ρk

]
,

µ
(k)
2 = Tr

[(
VA2k

⊗ IB2k

)
ρk

] − Tr
[(

IA2k
⊗ VB2k

)
ρk

]
,

µ
(k)
3 = 1

2 Tr
[(

VA2k
⊗ VB2k

)
ρk

]
+ 1

4 Tr
[(

V
†

A2k
⊗ VB2k

)
ρk

]
+ 1

4 Tr
[(

VA2k
⊗ V

†
B2k

)
ρk

]
, (13)

µ
(k)
4 = 1

2 Tr
[(

VA2k
⊗ VB2k

)
ρk

] − 1
4 Tr

[(
V

†
A2k

⊗ VB2k

)
ρk

] − 1
4 Tr

[(
VA2k

⊗ V
†

B2k

)
ρk

]
,

µ
(k)

5 = 1
4 Tr

[(
V

†
A2k

⊗ VB2k

)
ρk

] − 1
4 Tr

[(
VA2k

⊗ V
†

B2k

)
ρk

]
.

In equation (13), we have used Tr[U †ρ] = (Tr[Uρ])∗ and the functions Tr
[(

VA2k
⊗ IB2k

)
ρk

]
,

Tr
[(

IA2k
⊗ VB2k

)
ρk

]
, Tr

[(
VA2k

⊗ VB2k

)
ρk

]
are real. If Alice and Bob measure the expectation

value of σz ⊗ σz on the state ρa1b1(k), they will get µ
(k)
3 = Tr[(σz ⊗ σz)ρa1b1(k)] (the

measurement needs a classical communication).
When the two observers choose different input state ρin(k) for k = 1, 2, 3, 4, they can

obtain the functions µ
(1)
3 , µ

(2)
3 , µ

(3)
3 , µ

(4)
3 . It should be noted that the shift operator V2k is not

Hermitian for k � 2 [13]. Combining equations (9) and (13), we can obtain

µ
(1)
3 = 4δ + γ Tr[ρABρ̃AB],

µ
(k)
3 = 4δ +

γ

2
Tr[(ρABρ̃AB)k] +

γ

4

(
Tr

[(
V

†
A2k

⊗ VB2k

)
(ρAB ⊗ ρ̃AB)⊗k

]
+ c.c.

)
, k = 2, 3, 4.

(14)

According to equation (14), Alice and Bob can obtain the parameter Tr[ρABρ̃AB] in terms of
µ

(1)
3 . However, they cannot get the parameters Tr[(ρABρ̃AB)k] for k = 2, 3, 4, except that the

quantum state ρAB has some symmetric property which makes the following equation hold,

Tr[(ρABρ̃AB)k] = Tr
[(

V
†

A2k
⊗ VB2k

)
(ρAB ⊗ ρ̃AB)⊗k

]
, k = 2, 3, 4. (15)

In order to get the parameters Tr[(ρABρ̃AB)2], Tr[(ρABρ̃AB)3] and Tr[(ρABρ̃AB)4] for
an arbitrarily given quantum state, Alice and Bob need make other measurements with the
modified networks. As shown in figure 1, they add part (c) after part (b). In part (c), the
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input state is ρc
in(k) = ρa1b1(k) ⊗ ρa2b2 , where ρa2b2 = |00〉〈00|a2b2 is the initial state of two

extra ancillary qubits. The additional networks are same as those in part (b) except that the
controlled-σy gate takes the place of controlled-V2k gate. After the additional networks, the
output state is

ρout(k) = Uh2Uσy
Uh2

(
ρc

in(k)
)
U

†
h2

U †
σy

U
†
h2

, (16)

where Uh2 = Ha2 ⊗ Hb2 ⊗ Ia1b1 and Uσy
= UC−σy

⊗ UC−σy
. In equation (16), what we care

about is the quantum state evolution of the ancillary qubits a2 and b2. After some deduction,
we can get

ρa2b2(k) = Tra1b1 [ρout(k)] = 1

4


1 − µ

(k)
4 0 0 0

0 1 + µ
(k)
4 0 0

0 0 1 + µ
(k)
4 0

0 0 0 1 − µ
(k)
4

 . (17)

If Alice and Bob measure the expectation value of σz ⊗ σz on the quantum state ρa2b2(k), they
will get µ

(k)
4 = −Tr[(σz ⊗ σz)ρa2b2(k)].

When the two observers choose different input state ρin(k) for k = 2, 3, 4, they will get
the functions µ

(2)
4 , µ

(3)
4 , µ

(4)
4 . Inserting equation (10) into equation (13), we can obtain

µ
(k)
4 = γ

2
Tr[(ρABρ̃AB)k] − γ

4

(
Tr

[(
V

†
A2k

⊗ VB2k

)
(ρAB ⊗ ρ̃AB)⊗k

]
+ c.c.

)
,

(18)
k = 2, 3, 4.

Combining equations (14) and (18), we can get

Tr[(ρABρ̃AB)k] = µ
(k)
3 + µ

(k)
4 − 4δ

γ
, k = 2, 3, 4. (19)

Once Alice and Bob get all of the seven functions µ
(1)
3 , µ

(2)
3 , µ

(3)
3 , µ

(4)
3 , µ

(2)
4 , µ

(3)
4 , µ

(4)
4 ,

they can deduce the parameters Tr[(ρABρ̃AB)k] for k = 1, 2, 3, 4. In terms of the four
parameters, Alice and Bob can obtain the eigenvalues {λi}, and then the entanglement of
formation Ef . This concludes the description of our LOCC method.

The above method is the LOCC extension of the protocol [10] presented by Horodecki,
which is parametrically efficient compared with the LOCC quantum tomography. An unknown
two-qubit quantum state ρAB can be tomographied by LOCC measuring 15 parameters. For
example, the quantum state can be expanded as

ρAB =
∑
ij

Tr
[(

σAi
⊗ σBj

)
ρAB

]
σAi

⊗ σBj

4
, (20)

where σi, σj = I2, σx, σy, σz. In order to reconstruct the quantum state ρAB, Alice and Bob
need to measure 15 expectation values Tr

[(
σAi

⊗σBj

)
ρAB

]
. (Due to the unitary trace property

of ρAB, they can subtract one parameter.) However, if they use the LOCC method presented
by us, they only need to measure seven parameters.

3. Conclusion

In conclusion, we have presented a parametrically efficient LOCC method for measuring two-
qubit entanglement of formation without the prior state reconstruction. The work is based on
a series of works done by Horodecki, Ekert, Alves and co-workers. In our LOCC method,
Alice and Bob first perform three kinds of physical operations on their composite systems (two
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SPA of partial transposition operations and one spin-flip operation), by which the requisite
quantum states can be prepared. Then they estimate seven functions via two local modified
quantum networks supplemented a classical communication. After obtaining all of the seven
functions, they can deduce the entanglement of formation Ef .

For multilevel bipartite systems, there is no analytical formula for the entanglement of
formation. A weaker analytical measure—computable entanglement measure Ec [14] can
characterize the distillable entanglement [15]. An efficient method [9] for measuring Ec

has been presented as a byproduct of directly checking positive partial transposition (PPT)
criterion [16, 17].

There are some entangled states which have the property of PPT. These states represent
the bound entanglement [18, 19], which cannot be distillable. Efficient methods for detecting
bound entanglement in an unknown quantum state are worthy of consideration. Recently,
Doherty et al presented the concept of PPT symmetrical extension [20, 21], which makes the
solution of the problem possible.
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